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Abstract

Motion boundary extraction and optical flow computation are two

subproblems of the motion recovery problem that cannot be solved

independently of each other. They represent the most common dilemma in

motion research. A popular approach uses an iterative scheme that consists

of motion boundary extraction and optical flow computation components

and refines each result through iteration. This approach is typically time-

consuming and sometimes does not converge. We present a local, non-

iterative algorithm that extracts motion boundaries and computes optical

flow simultaneously. This is achieved by modeling a 3-D image intensity

block with a general motion model that presumes locally coherent motion.

Local motion coherence, which is measured by the fitness of the motion

model, is the criterion we use to determine whether motion should be

estimated, or otherwise motion boundaries should be located. The motion

boundary extraction algorithm is evaluated quantitatively and qualitatively

against other existing algorithms in a scheme originally developed for edge

detection. The results show that our algorithm is accurate in locating

boundaries. The flow portion of the algorithm is presented in another

paper[24] .

Keywords: motion analysis, segmentation.
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1. Introduction

This paper studies the strengths and weaknesses of recent motion boundary detecti

motion segmentation algorithms and proposes a local, non-iterative algorithm for motion bo

ary detection with potential for real-time implementation. This algorithm extracts motion bo

aries and computes optical flow at the same time. We apply a quantitative evaluation sche

boundary detection to show that our algorithm is accurate in locating motion boundaries.

In this paper, the problem ofmotion recoveryis referred to as involving two major subprob

lems:optical flow computationandmotion segmentation. Optical flow computation quantitatively

measures the motion associated with the perceived objects; motion segmentation, on th

hand, qualitatively distinguishes different moving objects. The fact that they are depende

each other has complicated the general motion recovery problem.

Due to the aperture problem, early motion estimation algorithms [17] [18] usually enforc

smooth flow field as an additional constraint. Recent approaches use spatio-temporal

[10] [14] [24] , often with large support, to estimate image properties and then solve for op

flow. In either case, on or near motion boundaries, this smoothing or filtering renders the es

tion incorrect. In other words, motion estimation is not accurate until we know where the bo

aries are. On the other hand, motion boundaries are defined as motion field discontinuities

motion field is qualitatively equivalent to the optical flow field [34] .) Due to the aforementio

optical flow error around motion boundaries, the requirement of a dense flow field, and no

the optical flow field, the motion boundaries are very difficult to extract and/or locate from op

flow. Researchers have used other image cues, for example, accretion and deletion[26] , or

flow [17] , to detect motion discontinuities, but they are not always correct for all situat

because they provide only partial information about the motion. In other words, motion bo

aries cannot be located accurately without a dense and accurate optical flow field.

Even though they are two aspects of a single problem, optical flow computation has rec

much more attention in the literature than motion boundary extraction. Existing method
 2
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motion boundary extraction are approached through optical flow algorithms. A popular tech

is to use an iterative scheme that consists of two components: optical flow estimation and m

boundary extraction. The basic idea is to refine both components’ results through iteration

approach is time-consuming and sometimes does not converge. We believe that optical flo

motion boundaries are of equal importance and we present an algorithm that produces bo

puts at the same time.

Although “global” motion segmentation may be more convenient for other motion app

tions, we realize, from the above analysis, that “local” motion boundary detection/extracti

sufficient for combining with optical flow an algorithm for motion recovery. In fact, our view

that local image properties provide abundant information and motion estimation should be

formed pointwise [23] .

The local properties that we use are image spatial and temporal derivatives up to third or

has been shown in [23] that Hermite polynomial differentiation filters are very stable and ins

tive to noise even up to this high order. With the aid of sufficient and accurate image proper

motion-model-based approach to boundary extraction becomes possible. In this approach

the image properties with a single coherent motion model, which leads to a linear system o

tiple motion constraint equations. Pixels that fit the model are locations where the moti

coherent, so the motion can be estimated using the linear system. Those pixels that do no

model represent failures of the motion model in describing the local motion. A failure of

model can only be attributed to multiple motions existing in the local window used to estimat

image properties, assuming that brightness constancy is maintained. Using a least squa

method on the overdetermined linear system, a failure of the model is measured by the re

An analysis of the residual is shown to reflect the likelihood of a motion boundary. Using an

mal filter on the residual, we can easily locate motion boundaries.

Using the residual for motion boundary extraction offers several advantages over using

First, the residual is a scalar, so it avoids the difficulty of handling vector field discontinu

while providing equivalent information about motion boundaries, e.g., whenever one comp
 3
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of the flow is discontinuous, the residual is high. Second, flow values on the boundaries a

accurate and are very noisy, and thus require smoothing for boundary extraction. This

smoothing may cause localization error. Third, the residual is computed using a 3-D m

model so that it corresponds to real motion boundaries and it is not susceptible to nonun

flow within an object; whereas nonuniform flow can induce false detections of discontinuitie

flow-based methods.

The appeal of a local, non-iterative approach lies in its potential speed. However, its acc

should not be compromised. To measure the accuracy, we need an evaluation scheme to c

different motion boundary extraction algorithms. Since recent approaches combine optica

and motion boundary detection, evaluation has often been performed based on the final

flow. This has the disadvantage of not distinguishing the source of error, which may be d

inaccurate optical flow or inaccurate motion boundary location. In other words, evaluation b

on segmented optical flow does not suggest a direction for improvement. Hence, we emplo

a quantitative evaluation scheme applied only to motion boundary extraction. This scheme

into account not only the probabilities of detection and miss but also localization error.

scheme was originally developed for edge detection [16] .

The rest of the paper is organized as follows. Section 2 surveys previous work an

strengths and weaknesses. The motion model and our algorithm are introduced in Section

cussions of motion boundary properties are presented in Section 4. The evaluation schem

experimental results based on it are presented in Section 5. Section 6 concludes the pape

statement of our contributions and future prospects for this work.

2. Previous Work

Braddick’s psychological experiments on random dot motion [5] set the stage for vi

research on motion boundaries. It verified the human visual capability of perceiving m

boundaries clearly without any other visual cues such as texture. Table 1 summarizes the e

work on motion boundary extraction or segmentation. This survey is not exhaustive but repre
 4
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typical work in this area, which will be elaborated in the following subsections.

2.1 Non-iterative algorithms

Early research on motion boundary extraction or motion segmentation can be roughly ch

terized as based on a non-iterative approach. These algorithms can also be put into three

ries [9] [32] based on whether the motion boundary extraction is performed prior

simultaneously with, or after the flow field estimation (Refer to Table 1).

The approaches that extract motion boundaries prior to flow field estimation employ “mo

primitives”[32] , usually normal flow [17] , as a basis. Hildreth’s method [17] is based on

intensity zero-crossing contours, which are different from motion contours, and may well c

motion boundaries. Traveling along a contour, the algorithm detects a boundary point as th

of the normal flow changes. The method has two limitations [17] : first, it does not detect bo

aries when the neighboring moving objects are traveling in about the same direction; seco

requires that there be two edge points with the same orientation in the contour. In addition,

the use of contours, the boundaries detected are sparse, which is very restrictive for genera

cations. Spoerri & Ullman [32] use a local histogram on motion primitives and statistical tes

Table 1: Summary of current motion boundary extraction algorithms

Non-iterative schemes Iterative schemes

Motion boundary
extraction vs. flow

estimation Algorithm by Techniques Algorithm by

Prior to Hildreth [17] Pyramid linking Hartley[12]

Spoerri & Ullman [32] Markov random
field with binary
line processes

Koch, Marroquin & Yuille [21]

Simultaneous with Mutch & Thompson [26] Murray & Buxton [25]

Schunck[30] Heitz & Bouthemy [15]

Shizawa & Mase [31] Tracking & nulling Bergen et al.[4]

After Potter [29] , Nakayama &
Loomis [27] , Adiv [2] ,
Thompson, Mutch, &

Berzins [33] , Dengler [9]

Robust estimation Darrel & Pentland [7]

Jepson & Black [19]
 5
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9] ),
infer motion boundaries, or tracking of “thin-bars” to find occlusion. This method is quite app

ing for the diversity of statistical tests offered, but the motion primitives do not always pro

sufficient information about the boundaries. The experiments show detection capabilities b

localization errors are significant even in synthetic images.

The approaches that extract motion boundaries simultaneously with flow field estim

include [26] ,[30] ,and [31] . Mutch & Thompson [26] use the fact that motion around occlus

boundaries induces accretion and deletion so that a local no-match between successive fram

signal occlusion boundaries, whereas a match can be used for estimating optical flow. This

rithm detects only occlusion boundaries but not all motion boundaries, for instance, two neig

ing objects moving in parallel directions or a rotating object where no accretion or dele

occurs, will not be detected. Schunck’s algorithm [30] pays special attention to avoiding op

flow ambiguity at motion boundaries by constraint line clustering. The motion boundaries

actually detected from the flow field discontinuities. We categorize this algorithm as perfor

simultaneous estimation and segmentation because of its special treatment in handling bo

flow. The basic idea of the algorithm is to use local consensus to assign flow values inste

smoothing. The algorithm produces high localization error on motion boundary “corners”.

clustering technique is heuristic and is prone to numerical instability. Shizawa & Mase [31

“multiple-flow constraint equations”, a generalization of the common optical flow constr

equation, to deal with motion boundaries and/or transparent motion. The algorithm generat

only flow but also a measure of the degree of multiplicity of motion. When a pixel’s associ

multiplicity is determined to be greater than one, it is the motion boundary or where transp

motion occurs. This method unifies rather than distinguishes motion boundaries and trans

motion. However, it is more suitable for transparent motion than motion boundary extra

because of the assumption of additive multiple flows, which is less valid around motion bo

aries.

The approach that extracts motion boundaries after flow field estimation is the most po

one. Global techniques such as the Hough transform (Adiv [2] ), region growing (Potter [2
 6
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and pyramid linking (Dengler [9] ) have been proposed. Local techniques include center-sur

filters (Nakayama & Loomis [27] ), and direction reversals of the Laplacian operator on the

vector field (Thompson, Mutch, & Berzins [33] ), etc. This approach offers only a partial solu

to the motion estimation problem because the boundary depends heavily on the accuracy

optical flow. However, this approach offers an algorithm suitable for one component of an

tive scheme. Such schemes are described next.

2.2 Iterative approach

The iterative method of motion estimation is an approach developed more recently. It ha

optical flow estimation and segmentation components. These components interact with eac

and improve their individual results during the course of the iteration. Pyramid linking, Mar

random fields with line processes, robust estimation, and tracking plus nulling techniques

been proposed. Iterative methods tend to be more accurate than non-iterative methods

time-consuming. Note that there are algorithms that use an iterative scheme to compute

flow only. However, we do not label them as iterative methods here since they do not includ

segmentation component.

Hartley’s algorithm [12] uses an iterative pyramid linking technique for flow field segme

tion. Segmentation is done by hierarchical linking and the flow field is computed and smooth

fitting a linear or quadratic flow field model to the current flow. The algorithm is efficient a

always converges but its overall accuracy depends heavily on the initial flow values, whic

author does not address.

The use of a Markov random field model for flow has been proposed by Koch, Marroqu

Yuille [21] , Murray & Buxton [25] , and Heitz & Bouthemy [15] . They handle flow discontinu

ties by introducing a binary line process to discourage smoothing across boundaries. Althou

reason for modeling the flow fields as Markov random fields is not clear, the results of these

rithms are generally good. The computational cost, however, is formidable (usually hundre

iterations, or image sweeps).
 7
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Robust estimation techniques have been proposed by Darrel & Pentland [7] , and Jep

Black [19] . They use a multi-layered motion model (“mixture model”[19] ) and thus are cap

of handling loosely occluded scenes (e.g. tree leaves) or transparent motion. The main ide

estimate the dominant motion(s) in a window while rejecting inconsistent constraints as ou

so as to minimize their influence on the results. The results are promising when the algor

converge.

Instead of using a layered motion model, Bergen et al. [4] model the addition of motion

differently moving image patterns (not necessarily square, as dictated by the window). A s

tracking and a ‘nulling’ mechanism is used to separate and estimate individual motions. In

words, a image registration and residual motion estimation are iterated. This algorithm has

tial for high speed implementation on a system with warping hardware. The results are reaso

good but the algorithm may not always converge, depending on the noise level.

The results of the iterative methods seem good, but they have two major problems. The

the computational load. the second is that the convergence rate depends on the scene, no

motion. Moreover, some of these algorithms may not converge at all.

3. Motion-Model-Based Boundary Extraction

The basic idea of our motion-model-based boundary extraction method is to fit the

image properties with a general motion model. The necessary elements of the scheme are

eral motion model which is based on arbitrary 3-D motion; an accurate estimate of image pr

ties, for which we use image spatial and temporal derivatives; and a procedure to measu

goodness of the image properties to the motion model. The following subsections briefly pr

the derivations of these three elements; the details can be found in [23] and [24] .

3.1 The general motion model

Here we describe an image motion model and an image motion equation that relates th

tio-temporal derivatives of the image intensity patterns in a sequence. Let a 3-D
 8
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 per unit time. Using the 3-D motion transformation matrix

, where , (1)

and , (2)

we derive (3)

where each of is a function of all of but can be regarded

translations in the presence of rotation per unit time.

Using perspective projection and letting  be the focal length, we derive

. (4)

With the small motion assumption, we derive the image motion equation from the brigh

constancy relation, i.e., ,

, (5)

where . (6)

* In an observer-centered coordinate frame;  is the axis along the line of sight.
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From this equation, we see that the local image motion is quadratic, However, the assum

of small rotation and reasonable focal length  allow us to simplify to a linear model,

, (7)

which will be used in the following derivation.

3.2 Spatial and temporal image derivatives

We estimate image spatial and temporal derivatives with Hermite polynomial differentia

filters [13] [23] . These filters are orthogonal and their Gaussian derivative properties provid

numerical stability required. We use this filtering scheme and the motion equation (7) to de

linear system of equations. In linear least square form,

, where (8)

, (9)

where the ’s are derivatives computed by Hermite polynomial filters and is the standard

ation of the used in defining the Hermite polynomials. Note that the higher order Her

filter outputs are relatively small [24] , the above matrix  can be simplified as

f

I x y t, ,( ) F x t α γx ρy+ +( )+ y t β ρx– γy+( )+,( )=

E min As b+=

s

α
β
γ
ρ

= b

Î t

Î xt

Î yt

Î xxt

Î xyt

Î yyt

= A

Î x Î y σ2
Î xx Î yy+( ) 0

Î xx Î xy σ2
Î xxx Î xyy+( ) Î x+ Î y–

Î xy Î yy σ2
Î xxy Î xxx+( ) Î y+ Î x

Î xxx Î xxy σ2
Î xxxx Î xxyy+( ) 2Îyy+ 2Îxy–

Î xxy Î xyy σ2
Î xxxy Î xyyy+( ) 2Îxy+ Î xx Î yy–

Î xyy Î yyy σ2
Î xxyy Î yyyy+( ) 2Îyy+ 2Îxy

=, ,

Î σ

G x( )

A
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The above simplification is also supported by the fact that the higher order Gaussian d

tives are usually smaller and less accurate. In other words, such an approximation does not

much error.

It is necessary that we derive the motion constraint equations up to the third order for the

pose of motion boundary extraction because we need to have more constraints than unkno

obtain a least square formulation and compute the residual, in (8). The residual measu

amount of disagreement among the equations in a linear system. In other words, if these eq

are derived from a mathematical model, then the residual reflects the deviation from the un

ing assumptions of the model. In our case, the assumptions are brightness constancy an

coherent motion. In the following subsection, we analyze the relationship between the re

and the motion boundary.

3.3 Analytical relations between the residual and the motion boundary

The residual of our algorithm is . The residual error can result from

approximation errors of our computational model in describing the physical world. Specific

these errors are:

1. The assumption of the motion model is violated in the local window, i.e., the wind

covers more than one moving object. Occlusion and multiple independently mo

objects in a window can cause this problem.

2. The assumption of constant image brightness is violated, i.e., the image intensit

A

Î x Î y 0 0

Î xx Î xy Î x Î y–

Î xy Î yy Î y Î x

Î xxx Î xxy 2Î yy 2Î xy–

Î xxy Î xyy 2Î xy Î xx Î yy–

Î xyy Î yyy 2Î yy 2Î xy

=

E

E min As b+=
 11
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3. Quantization or truncation error. Quantization errors result from digitization of

image intensities and sampling of the Hermite polynomial filters. Truncation er

are introduced when we use a limited spatial support to compute { }. Within

small window, the Hermite polynomials are no longer orthogonal and the deriva

computed are not accurate. This situation is worse for higher order differentiatio

ters.

The following figures show the typical effects and magnitudes of errors due to motion bo

aries, brightness changes, and quantization in a small local neighborhood. Fig 1.1 show

image at time 0. Fig 1.2.1 shows the same patch occluded by another patch. Fig 1.2.2 sho

patch undergoing random brightness change due to sensor noise. Fig 1.2.23 shows the inte

the same patch quantized coarsely. Fig 1.3.1-Fig 1.3.3 show the magnitudes of the errors

ated with these situations, where mid-gray represents 0, brighter levels mean positive and

levels mean negative. It can be seen that motion boundaries usually induce the largest

among the three. Note that the figures only show the errors in the image sequence. After we

Î

Fig 1.1 Original image

Fig 1.2.1
Boundary

Fig 1.2.2 Bright-
ness change

Fig 1.2.3 Quanti-
zation effect

Fig 1.3.1
Boundary error

Fig 1.3.2 Bright-
ness change error

Fig 1.3.3 Quanti-
zation error
 12
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the differentiation filters, the errors are transformed into errors in the linear system.

Hence we can model the above errors as perturbations or noise to the linear system [22

, whereN and∆b denote errors. (11)

We derive the analytical relationship between the residual and the errors as follows. Let

b, defined in (9), contain no noise. Then

 and . (12)

Let the noise contaminated optical flow be and the new residual be , and assum

 and  elementwise, i.e.,  and . Then

, and (13)

, so (14)

Using (12), this can be simplified as follows:

 and .

For the residual, substituting  into (11), and using (12), we derive

. (15)

Further analysis shows that expression , denoted by , has only two

trivial eigenvalues, both 1. We thus conclude that is proportional to the noise magnitud

noise orientation with respect to the matrix . And since is dependent on the image inte

pattern, which we cannot separate from the noise, we will only use the fact that residual e

Ẽ min A N+( )s̃ b ∆b+( )+=

A

E As b+ 0= = s AT A( ) 1–
ATb–=

s̃ Ẽ

N A« ∆b b« NNT 0= N∆b 0=

s̃ A N+( )T A N+( )[ ] 1– A N+( )T b ∆b+( )–=

A N+( )T A N+( )[ ] 1– AT A I AT A( ) 1– ATN NT A+( )+[ ]( ) 1–≈

I AT A( ) 1– ATN NT A+( )–[ ] AT A( ) 1–≈

s̃ AT A( ) 1– ATb– AT A( ) 1– ATN NT A+( ) AT A( ) 1– ATb AT A( ) 1– NTb AT A( ) 1– AT∆b––+≈

s̃ s AT A( ) 1– ATNs AT A( ) 1– AT∆b––≈ ∆s AT A( )– 1– ATNs AT A( ) 1– AT∆b–≈

s̃

Ẽ A N+( )s A AT A( ) 1– ATNs A AT A( ) 1– AT∆b– b ∆b+ +–≈

I A AT A( ) 1– AT–( ) Ns ∆b+( )≈

I A AT A( ) 1– AT– T

Ẽ

T T
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proportional to the noise magnitude. But in order to use the residual to extract boundaries w

need to separate the residual error induced by motion boundaries from that by other so

Therefore we analyze the residual profile in the spatial domain in the following subsection.

3.4 Residual profile

We now show that the residual profile across a motion boundary follows a specific patter

is very different from the residual profiles arising from brightness changes or quantization e

We can then use a spatial filter that matches this profile to extract motion boundaries.

Fig 2.1 shows a motion boundary neighborhood. A dotted square represents a local w

used to estimate image derivatives and the residual for the center pixel. By sliding the wi

across the boundary, we can compute and plot the residual profile. A typical residual pro

shown in Fig 2.2. It has a big plateau centered on the motion boundary. The width of the plat

about the same as the local window size. This is because only in that region does the local w

cover the boundary.

Brightness changes and quantization errors, on the other hand, are usually scattered

image; we do not expect their residual profiles to look like the residual profiles due to mo

boundaries. Also, since residuals arising from motion boundaries are larger than those a

from the other two sources, their profiles should be very prominent.

Local window

Fig 2.1 Motion boundary

Fig 2.2 Typical residual profile across boundary
residual

x
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3.5 Motion boundary extraction based on residual profile

Based on the above findings, we can extract motion boundaries using two spatial filter (fo

ferent directions) designed according to Canny’s criteria [6] for wide ridge edge detection

maxima of the two responses are thresholded to form thick boundaries. On the thick bound

we perform a morphological medial axis operation or skeletonization*[11] to extract the center

loci of the boundaries. Some simple pruning and contour following are then done to pr

streaking since the medial axis does not guarantee connectivity. Note that we do not use no

imum suppression and hysteresis as in [6] . It is because the residual is not proportional to†

and there may be multiple peaks in the residual profile that will cause the maximum to drift

from the actual center of the ridge. We have verified in experiments that the medial axis pro

better localization than nonmaximum suppression and hysteresis. The algorithm is summar

Fig 3.

4. Boundary Properties

One of the nice properties of motion-model-based boundary extraction is that we are a

not only locate boundaries but also find properties of the boundaries using the neighboring

parameters, which are simultaneously estimated. For example, we can find relative depth

boundary from the neighboring motion parameter . Under certain circumstances,

relative depth information may be used to perform qualitative scene reconstruction [28] , th

discriminate the distances of different objects. We can also find the directions of boundarie

* It is performed using Khoros 1.5 vmskel.
† It depends on the noise vector direction (Section 3.3).

residual

X

Y

Ridge detector

Ridge detector

Max Threshold Medial axis
Pruning

& Contour
following

Fig 3. Summary of our boundary detection algorithm.

γ az Z⁄=
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boundary strengths in ways similar to what many edge detection algorithms do. The bou

direction provides valuable information for subsequent processing. For example, it may as

following boundary contours to avoid streaking, or in updating incorrect optical flow va

around the boundary. The boundary strength reveals the relative motion on both sides

boundary; that is, when the relative motion of the two neighboring objects is large, the respo

the boundary detection filter will be large. This property lends itself to various motion app

tions such as obstacle avoidance or qualitative scene reconstruction.

From the above explanations, it can be seen that these properties will play important

when we integrate the optical flow algorithm [24] and the boundary extraction algorithm. N

that while these properties are commonly computed by regular edge detectors, motion bou

extraction algorithms rarely deal with them.

5. Evaluation and Experiments

It is very important to evaluate motion boundary extraction separately from optical flow.

makes clear what component of the motion estimation algorithm needs to be improved.

The evaluation of motion boundary extraction is similar to that of edge detection excep

the ground truth is less clearly defined in the former case. For example, given only two succ

images with motion boundaries (Fig 4.), the motion boundary can be designated at the lo

before or after the motion. We therefore use an odd number of frames to extract boundarie

motion boundary will be defined as the location of the boundary in the center frame.

A good quantitative evaluation scheme for motion boundary extraction should account fo

first frame
second frame

Fig 4.Motion boundary dilemma
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probabilities of detection and miss as well as the localization error. We reviewed several ex

schemes and found that Heyden’s method of evaluation [16] is best suited for motion bou

extraction purposes. It offers the following advantages over Abdou and Pratt’s method[1] : fi

penalizes long streaking, i.e., large gaps of missed boundaries; second, it penalizes thick

third, there is no need to perform a search for correspondences between detected and grou

motion boundaries. This evaluation scheme is sketched in Fig 5. It involves only binary im

subtraction, Gaussian convolution, and computing the root mean square (RMS) of all pixels

resulting image. The performance measure is the RMS of the Gaussian smoothed diffe

image. The Gaussian convolution is actually the crucial step that achieves the above advan

Note that in this scheme, a better algorithm will yield a smaller output quantity, with zer

its minimum.

In order to make comparisons, we also implemented algorithms developed by Schunc

and Thompson et al. [33] . In implementing Schunck’s algorithm, we used 3-D Hermite pol

mial filters to compute first order derivatives and perform constraint line clustering to esti

optical flow. In fact, we had originally used Gaussian smoothing and Sobel operators to com

the derivatives and found the results too noisy to use. The Canny edge detector is applied

flow components to find motion boundaries. In implementing Thompson’s algorithm, we

Lucas & Kanade’s algorithm implemented by Barron et al. [3] . The initial flow output is

dense, so we implemented a propagation and smoothing technique to fill the field. After the

is estimated, we use the vector field discontinuity detector suggested in [33] , using dire

reversal of the Laplacian response of the flow vector field, to locate motion boundaries.

“-”

binary ground truth
motion boundary image

binary detected
motion boundary image

Gaussian Convolution RMS

Fig 5. Heyden’s quantitative evaluation scheme.

Performance
Measure
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The first image we used is shown in Fig 6.1. It is a sequence composed of a baby face tr

ing laterally in front of a moving random dot background. The approximate flow map and

motion boundary ground truth are shown in Fig 5.2 and Fig 5.3, respectively. This im

sequence is synthesized so as to contain curved motion boundaries, which are common

world scenes but present difficulties for most motion boundary extraction algorithms. Th

because motion boundaries are often wider than intensity edges due to the nature of the

estimation algorithm and it is very difficult to capture wide as well as high curvature feature

In Fig 6.1-Fig 6.3, we show our algorithm’s residual map and Schunck’s and Thomps

flow fields. They represent the bases upon which these algorithms extract boundaries. T

son’s flow field (Fig 6.3) is smooth across boundaries as expected, while Schunck’s flow

(Fig 6.2) is noisier right on boundaries but more accurate near boundaries.

Next we show the detected boundary and true motion boundary for the three algorithm

Fig 6.1 Moving face on random dots Fig 5.2 Approximate flow field Fig 5.3 Motion boundary

Fig 7.1 Residual map Fig 6.2 Schunck’s flow field Fig 6.3 Thompson’s flow field
 18
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Fig 8.1-Fig 7.3, the dark edge represents the true motion boundary while the white edge

sents the boundary detected. Note that when the true boundary is detected, the color of th

becomes gray. These images are obtained by subtracting the ground truth boundary imag

the detected boundary image as dictated by Heyden’s evaluation scheme.

In Fig 7.2, it can be seen that Schunck’s algorithm suffers from boundary drift caused by

on the boundary as well as localization errors in the corners, as mentioned in [30] . On the

hand, when the motion boundary is a straight line, Schunck’s algorithm performs better tha

other two. In Fig 7.3, it can be seen that Thompson’s algorithm suffers from flow noise away

boundaries. Since it uses a direction reversal technique similar to zero crossings, spurious

are detected. Otherwise, the localization is very good. Our algorithm’s boundary is better a

ners and essentially free of the major problems of the other two. The following table summa

the quantitative performance measure computed by Heyden’s evaluation scheme. It can b

that our algorithm is better than the other two.

The next image we use is the Yosemite fly-by sequence shown in Fig 9.1. This is a synthe

sequence in which the observer is approaching the scene and motion boundaries exist b

Table 2: Summary of quantitative performance measure

Comparison
Algorithms Our Algorithm

Schunck’s
Algorithm

Thompson et
al.’s Algorithm

Performance measure 5.85 7.86 10.32

Fig 8.1 Our algorithm’s boundary Fig 7.2 Schunck’s boundary Fig 7.3 Thompson’s boundary
 19
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objects of different depths. As can be seen by the flow field (Fig 9.2), two prominent mo

boundary curves exist. One separates the sky from the mountains, and the other separa

domed mountain in the lower left corner from the other mountains. The boundary ground tr

not available. In Fig 10.1-Fig 9.3, we show the results of the three boundary extraction algor

overlaid on the original image. The white edge points represent the extracted boundaries.

Note that the boundaries that separate sky and mountains are easier to extract beca

motion directions are different on the two sides. All three algorithms indeed extract these b

aries. However, the other boundary that separates the domed mountain from the other back

mountains is not as easy to extract because the motions on the two sides are in the same d

but have different magnitudes. Note that this kind of motion field is typical in the image seque

captured by a forward moving observer. In Fig 9.2 Schunck’s algorithm fails to extract t

boundaries because the noise on both sides overwhelms the small variation in flow. In F

Thompson’s algorithm fails to extract these boundaries because the presmoothing and fill

Fig 9.1 Yosemite fly-by Fig 9.2 Yosemite fly-by flow field

Fig 10.1 Our algorithm’s result Fig 9.2 Schunck’s result Fig 9.3 Thompson’s result
 20
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the sparse field smooths out the small flow variation. On the other hand, our algorithm extr

large part of this boundary curve (Fig 10.1).

Our motion-model-based method offers the capability of segmenting moving objects with

ferent flows, divergences, or curls. The Yosemite fly-by sequence, for example, contains dif

divergences. The residual values indeed account for incoherence of the above three motion

eters in the local window. This is why our algorithm is capable of extracting these boundari

6. Conclusion

Motion boundary extraction algorithms are as important as motion estimation algorithm

the complete motion recovery problem. However, their interdependency poses a computa

dilemma that renders any partial solution inaccurate. Indeed, the only way to solve the m

recovery problem is to simultaneously address both motion segmentation and estimation.

recent research has focused on iterative methods, we propose a method based on a genera

model. This method is local, non-iterative, and simultaneously deals with both motion estim

and boundary extraction.

The motion-model-based approach fits the local 3-D image pattern to a motion model an

puts a boundary likelihood measure, the residual, which may be used to extract motion b

aries. Compared with motion boundary extraction from flow, it offers several advantages: fi

is a scalar and thus avoids handling vector field discontinuities; second, the residual is less

on the boundary than the flow; third, the residual corresponds to true 3-D motion discontin

instead of high variations caused by flow field nonuniformity within an object. In fact, the resi

accounts for discontinuities in flow, divergence, and curl.

The evaluation of motion boundary extraction should be separated from the evaluation o

cal flow to truly understand the performance of the individual motion algorithm components

employed a simple but elegant evaluation scheme and synthesized a difficult motion seque

comparison. We then demonstrated that our algorithm performs better than existing algorit
 21
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In the future, we will integrate the motion estimation algorithm described in [23] and

boundary extraction algorithm developed here. This will involve not only updating the fl

around the boundaries but also finding important motion information from boundary prope

such as the local relative depth. Other future topics include finding occluding surfaces, and

topological sorting of moving objects. These are important for obstacle avoidance and navig
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